Job Coscheduling on Coupled High-End
Computing Systems

Wei Tang*, Narayan Desai#, Venkatram Vishwanarth#
Daniel Buettner#, Zhiling Lan*

* llinois Institute of Technolology
Argonne National Laboratory

Outline

Background & Motivations
Problem Statement
Solutions

Evaluations

Background

* Coupled systems are commonly used
— Large scale system: computation, simulation, etc

— Special-purpose system: data analysis,
visualization, etc

* Coupled applications:
— Simulation / computing applications
— Visualization/data analysis applications
— Example: FLASH & vI3, PHASTA & ParaView

¢ 4§

T

Coupled systems examples

Intrepid & Eureka @ANL
— Intrepid: IBM Blue Gene/P with 163, 840 cores (#13 in Top500)
— Eureka: 100-node cluster with 200 GPUs (largest GPU installation)
 Ranger & Longhorn @TACC
— Ranger: SunBlade with 62,976 cores (#15 in Top500)
— Longhorn: 256-node Dell Cluster, 128 GPUS
* Jaguar & Lens @ORNL
— Jaguar: Cray XT5 with 224, 162 cores (#3 in Top500)
— Lens: 32-node Linux cluster, 2 GPUs
* Kraken & Verne @ NICS/UTK
— Kraken: Cray XT5 with 98,928 cores (#8 in Top500)
— Verne: 5-node Dell cluster.

e Andsoon......

Motivation

 Post-hoc execution

— Computing applications write data to storage system,
and then analysis applications read data from storage
system and process

— 1/0 time consuming

* Co-execution is increasingly demanded:

— Saving |/O time by transfer data from simulation
application to visualization/data analysis (an ongoing
project named GLEAN)

— Co-execution enables monitoring simulations,
debugging at runtime

— Heterogeneous computing

Problem statement

* System A and B running parallel jobs
— Job schedulers / scheduling policies are independent
— Job queues are independent

 Some of jobs on A has associated (mate) jobs on B.
— Mate jobs are in pairs: one on A, the other on B

* Co-scheduling Goal:

— Guarantee the mate jobs in the same pair start at same
time on their respective hosting system without manual
reservation

— Limit the negative impact of system performance and
utilization.

Related work

 Meta scheduling
— Managing jobs on multiple clusters via a single instance
— Moab by Adaptive Computing Inc, LoadLeveler by IBM

— Our work is more distributed. Different scheduler running
on independent resource management domain can
coordinate job scheduling.

e Co-Reservation

— Co-allocation of compute and network resources by
reservation

— HARC (Highly-Available Resource Co-allocator) by LSU

— Our work doesn’t involve manual reservation; co-
scheduling is automatically coordinated.

Basic schemes

* When a job can start to run on a machine
while its mate job on the remote machine
cannot, it may “hold” or “yield”.

 Hold

— Hold resources (nodes) which cannot be used by
others until the mate job can run

* Yield

— Give up the turn of running without holding any
resources

Algo

rithm

Algorithm 1: RunJob(j, N)

[B I]

= e
[l — I — B = - B [— (L | B N

e

[
i

Input: A scheduled job 7 with assigned nodes N
Result: Job j either starts. or holds, or yields. Its
remote mate job k. if exasting. could be
triggered to start under certain condition.
if cosched_enabled then

k = remote getMateJobId(;)

if & then
mate_status = remote gethlateStatus(k)
switch mate_status do
case "unsubmitted”
case "gquening’”
mate_started = remote tryStartMate(k)
if mate_started then
self startTob(7. N)
end
else

if sel f.scheme == "hold"” then
| selfholdJob(j, N)

end

14
17
15
19
]
|

3

13
4
4z
16
)
15
19
k1]
3
32
33
3
&
1

end
else

end
else

if sel f.scheme == "yield"” then
| self vieldJob()
end
end
ndsw
ase "holding”
self startJTob(j. N)
remote startTob(k)
endsw
case "unknown”
self startTob(j. N)

endsw

- T

endsw

| self startTob{j. N)

end

| self startJob(j. V')

end

| A job (a) can run

osched Enabled

Has mate job (b)?

Wate status ==

4

“gqueuing” or
“unsubmitted™?

“hold"?

[
Y
¥

Remote.start_mate(b)

Remote.try_run_mate(b)

Mate Lacal
started? cheme
Y Hold Yield

¥

{ job (a) |« ¥

yield_job (a)

» start_j

Strategies combination

 Hold-Hold

— Good for the sync-up of mated jobs
— Bad for system utilization
— May cause deadlock
* Yield-Yield
— No hurt for system utilization
— Bad for mated jobs waiting

* Hold-Yield (or Yield-Hold)
— Behave respectively

Deadlock
* Coupled systems A & B, both use “hold”
scheme

* Circular wait (a12b1>b2—>a2—>al)

&,
wall for starting together
al {holding 6) b1 (wailing 6)
wall for releasing nodes wait for releasing n
OC \ J
LI L a2 jwaiting 6) b2 (holding &)

wait for starting together

Enhancements

* Solving Deadlock

— Release all the held nodes periodically (e.g. every
20 minutes)

* Reduce overhead
— Threshold for yielding times

 Fault-Tolerance consideration

— A job won’t wait forever when the remote
machine is down

Evaluation

* Event-driven simulation using real job trace
from production supercomputers.

* Qsim along with Cobalt resource manager.

Experiment goals

* |nvestigate the impact by tuning system load

* |nvestigate the impact by tuning the
proportion of paired jobs.

Job traces

* Intrepid (real trace)
— One month, 9220 jobs, sys. Util. 70%

* Eureka (half-synthetic, packed into one month)
— Trace 1: 5079 jobs, sys. Util. = 25%
— Trace 2: 11000 jobs, sys. Util. = 50%
— Trace 3: 14430 jobs, sys. Util. =75%
— Synthetic: 9220 jobs. Sys. Util. =48%

Evaluation Metrics

* Avg. waiting time
— Start time — Submission time
— Average among total jobs
Avg. slowdown
— (wait time + runtime) /runtime
— Average among total jobs
Mated job sync-up overhead
— How many more minutes need to wait in co-scheduling
— Average among all paired jobs
Loss of computing capability

— Node-hour
— System utilization rate

Average wait by sys. Util.

(a) Intrepid avyg, wait

0 soxcend SEyes mm i prancs

1210
[F 11
E [TH
': 1 Scheme on Intrepid-Eureka
) HH HY YH Y HH HY YH ¥y HH HY YH ¥y HH: Hold-Hold
0.2% 0,50 BT HY: Hold-Yield
(b) Eureka avyg. wait YH: Yield-Hold
O coxcnd ™kges =i mgancn YY: Yield_YleId
120
1C0
; 4-: Sys util. on Eureka:
» 25% 50% 75%

HH HY YH %Y HH HY ¥H ¥ HH HY ¥H ¥Y
'-|le '-l. :|: |-|.TE

Slowdown by sys. Util.

(a) Intrepid avg, slowdown

O coxntemd mopee wmgiigrancs

075 0500 0,75
(b} Eureka ava. sowdawn

O s vy smpgan = s far e

0,25 0,50 0,75

minutes

Coscheduling overhead by sys. Util.

Intrepid job sync-up overhead (average)

Bhold ®yield

250
200

150

7
100 //
50 /
Omm%%%

25%/H 25%/Y 50%/H 50%/Y 75%/H 75%/Y

Eureka config. (sys. util./scheme)

minutes

160
140
120
100
80
6
4
2

o O O

Eureka sync-up overhead (average)

@ﬁ@é@é

25%/H

Bhold Hyield

25%/Y 50%/H 50%/Y 75%/H 75%/Y

Eureka sys. util. / Intrepid scheme

Using yield costs more sync-up overhead than using hold

node-hour

Loss of computing capability by sys. Util.

Intrepid loss of computing capability

I node hour — ew=gumm sys, Util

1,600,000
1,400,000
1,200,000
1,000,000
800,000
600,000
400,000
200,000

0

25%/H 25%/Y 50%/H 50%/Y

75%/H 75%/Y

Eureka config. (sys. util/scheme)

5.0%
4.5%
4.0%
3.5%
3.0%
2.5%
2.0%
1.5%
1.0%
0.5%
0.0%

lost sys. util. rate

node-hour

Eureka loss of computing capability

Em node hour — esmtemssys. Util.
4000 6.0%
3500 5.0%
3000
0,
2500 4.0%
2000 3.0%
1500 2 0%
1000
0,
500 1.0%
0 0.0%
25%/H 25%/Y 50%/H 50%/Y 75%/H 75%/Y

Eureka sys. util./Intrepid scheme

Util loss is caused only by using “hold”

lost sys. util. rate

Avg. wait by proportion of paired jobs

{a) Intrapid ava, wail {minutes)
O comrred = byes wmgiispnce

1Kl
180
160
&0

0
HHI
Hl

&0

&0

20

HH HY TH Y - HY T Y HH HY vH ¥Y HHHY ¥H Y HHHY YH YY
2T] 1 20% 3%

(b) Eureka ava, wait (minutes)
O coxrrmi = pyne wmi{ig-ancn
180
160
1411
120 _
100

i [. il Bl i]] | L
HEHY YHYY HHHY YHYY HHHY YHYY HHHY YH ¥Y HHHY YH 1Y
7.5% 5% 10% 0% 33%

Slowdown by proportion of paired jobs

{a) Intrepid avyg, slowdown
O romcred = baes wEHi pencs

20
18
16
14
17
i

= ————

e

(=T = I - - (I)

HH HY ¥+ ¥¥ HH HY YH %Y HH HY YH ¥ HH HY ¥+ % HH =Y ¥H ¥
0 2 105 Fadle] 3d'%
(b} Eureka avg, slowdown

O oot = bype w0 granse

:- = Oallo |_| |_||_|

HH HY ¥H ¥ HH HY YH %7 HH HY YH ¥ HH HY YH 7Y HH HY YH Y

2.5% 5% 10% % CE

|
]

minutes

Overhead by proportion of paired jobs

160
140
120
100
80
60
40
20
0

[

RN AR

2.5%/H

1l
[T
5%/H 10%/H 20%/H

mate job ratio/remote scheme

Intrepid job sync-up overhead (average)

7

7z

R R R R

33%/H

minutes

250

N
o
o

Juny
[
o

Juny
o
o

[
o

*RERRERRR

Eureka job sync-up overhead (average)

mhold ®yield

I,
I,

2.5%/H 5%/H 10%/H 20%/H 9

w
w

mate job ratio/remote scheme

node-hour

Loss of computing capability by proportion

of paired jobs

Intrepid loss of computing capability

3500000

3000000

2500000

2000000

1500000

1000000

500000

0

2.5%/H

mmmm node hour — ew=gumm sys. Uil

5%/H 10%/H 20%/H

mate job ratio/remote scheme

33%/H

12.0%

10.0%

8.0%

6.0%

4.0%

2.0%

0.0%

node-hour

18000
16000
14000
12000
10000
8000
6000
4000
2000

Eureka loss of computing capability

2.5%/H

mmmm node hour — e sys. Uil

5%/H 10%/H 20%/H

mate job ratio/remote scheme

33%/H

25%

20%

15%

10%

5%

0%

Summary

* Designed and implemented coscheduling
algorithm to start associated at the same time in
order to fulfill multiple needs of certain
applications, such as reducing I/O overhead in
coupled HEC environment.

e Evaluated the coscheduling impact on system
performance and overhead for jobs needing co-
scheduling.

* Conclusion: coscheduling can work with some
acceptable overhead under different system
utilization rate and proportion of mated jobs.

Thank you!

